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SUMMAR Y

The purpose of this report is to present a least squares procedure
for calculating smoothing and differentiation coefficients and to present
a procedure for calculating standard deviations of the data on which
smoothing and differentiation formulas are used.

SECTION I. INTRODUCTION

External and onboard observations of various types are used in

evaluating the performance of a flight test vehicle. All of these obser-

vations contain random errors as well as bias and systematic errors.

Often first and second derivatives of the observations with respect to

time are require([. The presence of random error in the observations

makes the aeterrrtination of plausible derivatives considerably more

difficult. Most observations fall into two categories: i) essentially

time varying functions (such as external tracking data, guidance output,

pressures, flow rates, etc.) and 2) essentially oscillatory functions

(such as normal _Lccelerations, angular accelerations, angular rates,

etc.). Appropriate smoothing and differentiation procedures can

largely reduce the effect of random errors in the observations.

The derivation of coefficients that may be used for smoothing and

differentiation of various observations is laborious, especially if a

large number of _oints and a high degree approximating polynomial are



required. In addition, it is usually impractical to publish a sufficient
variety of smoothing and differentiation coefficients to meet all needs
since the major characteristics of the specific observation type should
be considered. Most methods for computing smoothing and differentia-
tion coefficients (Refs. l, 2, and 3) derive them separately and with a
lesser degree of flexibility than is desirable for evaluation purposes.

This report presents the development of a compact method for
determining smoothing and differentiation coefficients that is easily
adaptable to the characteristics of the observations and is readily
usable on high speed electronic digital computers. The method
presented is very effective with observations that can be approximated
by a polynomial that is some function of an independent variable. The
method can also be used with observations that are essentially periodic
functions provided that only short arcs of a cycle occur during a given
smoothing or differentiation span.

The methods were developed specifically for flight evaluation
purposes but are equally valid for any type of observation or data for
which smoothing or differentiation techniques are useful.

SECTION II. SMOOTHING AND DIFFERENTIATION
COEFFICIENTS

A. PROCEDURE FOR CALCULATING THE COEFFICIENTS

One basic assumption is needed in the development of the
proposed method of determining the smoothing and differentiation
coefficients. The assumption is: The observation can be sufficiently
well represented as a polynomial that is a function of an independent
variable over a short span of the independent variable. Most observa-
tions used in flight evaluation would use the time of flight as the
independent variable. The basic equation is obtained by expanding the
function, Xt, in a Taylor's series about the point, to.

-- z_td d
- - iAt' Xo+ iAt3Xo +... +--Xo (I)

X t = X0 + AtX0 + _ -_ d!

where X t is an observable parameter at time t; At is the time difference

between the time of an observable parameter and the time at which the

smoothed or differentiated value is to be calculated, i.e. , At = t - to ;



d
_0 is the smoothed pa_=ameter at to; :_0, J_0, ... Xo are the successive
derivatives of the smoothed parameter at to. Truncating equation (1)
after the dth term determines the degree of the polynomial representing
the observation. The point of truncation should be chosen such that
bias induced by using a polynomial having its dth derivative constant
is insignificant compared to random error remaining in the smoothed
data.

example

involves

as."

The use of Eq. (I) will be illustrated in the following simple

which at sumes the second derivative constant and which

three observed values. The observed values can be expressed

1 -12X.1 = X0 +Z_t-1 :_0 + 2 z_t J_0

-T" T_.

Xo = Xo + (O) Xo + (O) Xo (z)

M

Xl = Xo + _tl :<o + 2AhZJ_o

This may be explessed in matrix form as:

]i X_l

×01

XI d

L

= L

L

1
At-i _ At .iz

0 0

1 g
Z_t1 g At1

X0

X0

X0

(3)

In this example, the smoothing polynomial will fit the observed

points exactly. Consequently, there can be no removal of random

error. By using more observations without increasing the degree of

the smoothing polynomial, a least squares procedure results. With the

additional observations Eq. (3) becomes:

R = EU (4)

where for exalmp:e:
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!x l

X__

X- I

R= Xol

x, I

X z

X3

E __

1
1 At-3 _ _-3 z

1
l _-z Z _-z z

1
1 Z_:t:_I g z_l:q z

I 0 0

1
i Z_t1 g z_tl z

1
i A_t:z g A_Lzz

i A_t:3 ½ _3 z

U _

_Xo

_Xo]

The elements of the matrix E are the partial derivatives with respect
-- -%--

to the unknowns X0, X0, and X 0 of the conditional equations:

J_oF i = Xo + z_ti_[o + Xz_iz Xti

where i = 0, I ..... N- I.

The least square solution of Eq.

expression:

R: u

(4) is now given by the

where W is an arbitrary weight matrix.

The smoothing and differentiation coefficients are now the

elements of the matrix .(Ez WE) -I(E T W)] and are entirely independent

of the observed parameters.

The matrix [(E r WE)-' (E T W)] will contain d + 1 rows and N

columns. The smoothing coefficients are the elements of the first row

denoted Co d , the first derivative coefficients denoted CI d are the

elements of the second row, the dth derivative coefficients denoted Cdd

are the elements of the d+l row. Each set of coefficients forms a row

matrix. The solutions become:
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_o = Co d R.

_o = C1 d J_-

_o = Cz d ]_ (6)

d

Xo = CddR

This procedure for obtaining coefficients does not require that

the observations he at equally spaced time intervals. There is an

advantage, howew.,r, in having data available at equally spaced intervals

since the coefficients need to be calculated only once. Thereafter, the

data can be proce,;sed with a moving arc as long as the data remain

available at the inLerval for which the coefficients were calculated.

If the dat.l points are not equally spaced then the coefficients

must be recalculated whenever a smoothed or differentiated value is

desired.

A number of smoothing and differentiation coefficient ratios

(the silhouettes or shapes of the plotted coefficients versus time) are

shown on pages 12 to 15. The dashed lines in each figure indicate

equal weights wer_ used in the calculation of the coefficients, and the

solid lines indicat_ the weights used in the calculations were of the

form e -kt2, i.e., normally distributed (see Fig. 4).

Figure I shows the silhouettes of the smoothing coefficients

Co I, C0 3, and C0 5. The smoothing polynomials for which these coeffi-

cients are applicable are of the degrees one, three, and five, respectively.

Figure 2 shows the silhouettes of the first derivative coefficients CI z,

CI 4, and C, 6. The smoothing polynomials for which these coefficients

are applicable are of degrees two, four, and six, respectively. Figure 3

shows the silhouettes of the second derivative coefficients CZ 3 and Cz 5.

The smoothing polynomials for which these coefficients are applicable

are of degrees three and five, respectively.

B. INTERPOLATING AND EXTRAPOLATING

By slightly modifying the basic formulas, one may calculate

the coefficients fo: interpolating and extrapolating. The following

modification is made to Eq. (4) for obtaining interpolation coefficients.
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"X_s

X_z

X_,

X,

Xz

Xs

"I

1

1

1

i

At -3 ½ At 3z

At_z ½ At_zz

At_, ½ At _,z

1
Z_tl _ L_tl z

1
Atz _ Z_tzz

 t3zz2_ts z

I !

Xol

Xol

(7)

This arrangement merely omits the to observation since this is the time

that an interpolated value is needed.

For extrapolation Eq. (4) becomes:

X_71

x-61

x-51

X_,l

x-31

,X-zl

X-ll

1

1

1

= 1

1

1

1

1
At_? _ At_?z

Zlt-6 z

1
At-5 _ _t _sz

1 Z
At_4 _ ZXt_4

i Z
z_t_s $ Z_t_s

1 Z
Z_t_z _ z_t_z

1
At_1 _ Z_t4 z

"m !

Xol

Xol (8)

This extrapolation method will produce the coefficients necessary to

obtain values (X 0, X 0, X0) at some time after the observations are

available. The same procedure could produce coefficients for extrapo-

lating values prior to the time that observations are available by

substituting observations X÷I through X+7 in place of X_ 1 through X._.

C. APPLICATION

The purpose of using smoothing and differentiation procedures

is to eliminate random error from measured data and to obtain realistic

derivatives. To obtain accurate results without inducing bias or



destroying real data, the degree (d) of the smoothing polynomial,

number (N) of observations, and the weights (W) to be used in the

calculation of the coefficients must be properly chosen. To

accomplish this the following suggestions are made:

the

i. Sin('e the smoothed values become more sensitive to

random error as the degree of the smoothing polynomial increases,

the polynomial ol lowest degree which adequately represents the data

should be used.

2. Nu_.lerous factors must be considered in deciding the

number of observations to be used in calculating the coefficients. Some

of the more important are: (a) the degree of smoothing polynomial to

be used; (b) the r lagnitude of the various derivatives of the smoothing

polynomial; (c) the observation rate; (d) the amount of random error in

the data. In other words a priori knowledge of the data is essential.

3. All the observations in the smoothing interval should be

used unless "stripy" values have definitely been detected.

4. If r;_ndom error is unusually large, increase the number

of coefficients or reduce the degree of the smoothing polynomial. The

adverse effects of bias induced in this manner may be minor compared

to the resulting effects of poor smoothing.

5. There are no restrictions in formulating the weights to be

assigned to the observed values. In most cases, however, the weights

should be symmetrical about the midpoint of the smoothing interval and

the weight of the value corresponding to the midpoint should be a

maximum.

All of the above suggestions are applicable for observations

that may be either approximated by a polynomial, or are periodic

functions with only short arcs of a cycle occurring during a given

smoothing or differentiation span.

SECTION II[. CALCULATION OF STANDARD DEVIATIONS

Standard deviations can be calculated easily by carrying the

smoothing and dilferentiation coefficient calculations several steps
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further than illustrated in Section II. These standard deviations will

pertain to the raw data prior to any smoothing effects.

The coefficients [(E TWE) -l (E T W)] as obtained from Eq. (5) are

used to calculate the unknowns (U) at some particular time, to. The

standard deviations are then calculated at this particular time inde-

pendent of the surrounding times except through the matrix (E).

The smoothed parameters {S) about to are obtained from the

expression:

S_EU.

The desired residuals are now given by:

v = R - S (9)

where:

S

X-3

X_z

!
!

!

X3

R

X_ 3

X_ 2

t
!

!

X3

V ___

X-3 - _-3

X -z - -_-z
i I

! I
I !

X3 - X3

or

'_3( -3[

I
_3_ -zJ

!
!

!

 x31

The variance is then given by:

yTy
¢zX0 -

N
(I0)

where:

y ___

I

_X.3 -

z2_X_z -_,&X
!

I
I

I

zXX3 - ZXX

m

and ZXX -

3

i= -3

N

The first derivatives of the smoothed values around to are obtained

in the following manner. The first derivative of Eq. (1) is written:
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- =- 1 + 1
X t = Xo + AtXo +_ -_ ... (11)

and it is seen tha:: the first derivatives of the smoothed values can easily

be obtained with elight modifications to the matrix (E) and the matrix (U).

Let E denote the _natrix formed from the matrix (E) by dropping its last

column and let _ be the matrix formed from the matrix (U) by dropping

its first element, then

D : E---_ (1Z)

The elements of the column matrix (D) are the desired derivatives. The

residuals required for the calculation of the standard deviation of X at

to are the differences in the derivatives of the smoothed values and the

derivatives obtair.ed from the unsmoothed data. The second derivatives

of the smoothed values are obtained in a similar manner.

The following simple example will illustrate the procedure. It is

assumed in this example that the observed data can be represented by

a third degree polynomial and that nine observed data points are avail-

able. The smoothed values around to are given by:

m

X.4

X_._

I
• I

I

1

I

l

m.4 _ n_-4 2 _ _..4

z:M_3

_3

1 .,_4 3

. o

Xo

,"T"

Xo

.-T"

Xo

Xo
. o

(13)

The first derivatives of the smoothed values are given by:
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X_41

J
-r !

X-31

I
!

!

l

1

1

1

/kf3

1
_4 _ _4 z

_ °

X o

_0

!..--T

Xo
.

and the second derivatives of the smoothed values are given by:

.I.

X.4

.--T

X-3

TT

X3

.-T

X4

1

1

1

1

A__4

At-3

(14)

(15)

The appropriate variances are obtained in the same manner as above.

SECTION IV. ACCURACY OF METHOD

The matrix [_j(ET WE)-I(E T W)J,] which will be defined as B, is

essentially the partial derivatives of the unknowns, U, with respect

to the observed parameters, R. The variances of U can be determined

from the usual equation if the variances of observed parameters are

known.

_U z = B _RZB T (16)
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The variances of the smoothed positions, velocity, and acceleration

were derived fro_ the above equation assuming the raw position data

were known within ±10meters as an example of the accuracy obtained

with this procedure. The standard deviations, which are the square

roots of the vari_.nces, for the smoothed positions, velocities, and

accelerations are shown in Figs. 5 through 7.

The standar¢i deviations are plotted versus the number of points used

where various degree polynomials were assumed to fit the data during

the interval. Each of Figs. 5 through 7 indicates that the largest number

of points with the lowest degree polynomial, commensurate with a good

fit of the data, is required to produce the smallest standard deviation.

The standard deviations shown are independent of the data sampling

rate, the time in_:erval chosen, or the absolute magnitude of the observa-

tions. The standard deviations from this method, are a function of the

variances of the observed parameters, the number of points used, and

the degree of the polynomial required to produce a fit to the data.

SECTION V. CONCLUDING REMARKS

A method fox calculating smoothing and differentiation coefficients

has been developed. It lends itself easily to various types of data with

different characteristics. The method is particularly applicable to

computer use since it eliminates the necessity for storing large numbers

of coefficients in memory. Because of the cumulative effect of round-off

error inherent in least squares techniques, the computations involved in

the calculation of the coefficients should be done in double precision.



12

L

Co

t-5o t

..... Assumes Equal Weights

--Assumes Varying Weights

tso

/ \x

t-so// to _tso

l II I/ \ \

l / /

, '/ ,
t-so, _ to _ /tso

/ \

I
I

I
!

I
t

Fig. i. Smoothing Coefficients Assuming the

First, Third, and Fifth Derivatives

Constant



Assumes Equal Weights

_Assumes Varying Weights

z

CI

13

4

C
1

\

\

t-so _,_ ,.I/

\

6

C1

t-501 _ \ I

I _ i

I

x

:o _ /It50
% •

Fig. 2. First Derivative Coefficients Assuming

the Second, Fourth, and Sixth Derivatives

Cons tant

MTP-AERO-62- 71



14

..... Assumes Equal Weights

--Assumes Varying Weights

3 i

C z #I
/

/
/

/
/

#
\ /

t-s0 \ k to / ,/ ts0

5

C z

'_"%\%

t__ol , \ to

/

I

,%J

f #' Itso

I
// !

I
I

I
I
I

I

Fig. 3. Second Derivative Coefficients Assuming

the Third and Fifth Derivatives Constant

MTP-AERO-62-71



15

t-5o to tso

Fig. 4. Form of the Principle Diagonal

of the Weight Matrix

MTP-AERO-62- 71



16

7

1
20

_ d=7

d=5

d=3

40 60 80 100 1Z0
Number of Points

Fig. 5. Position Standard Deviations

140 160

MTP-AERO-62-71



I01

17

3"

b

10 o

10-1

4O

Fig. 6.

_d=5

Velocity Standard Deviations

6O 80 I00 120

Number of Points

140 160

MTP-AERO- 62-71



18

101

A

_d= 5

Fig. 7. Acceleration Standard Deviations

10-3

20 40 60 80 100 120 140 160

Number of Points MTP-AERO-62-71



19

REFERENCES

Io

2.

1

Dederick, L. S. , Construction and Selection of Smoothing

Formulas, B_llistic Research Laboratories, Aberdeen Proving

Ground, Mar/land, 1953.

Milne, William Edmond, Numerical Calculus, Princeton University

Press, Princeton, New Jersey, 1949.

Strand, Otto Neall, The Smoothing and Differentiation of an

Empirical Function by the Use of a Least Squares Polynomial,

U. S. Naval Ordnance Test Station, China Lake, California, 1952.



20

APPROVAL MTP-AERO-62-71

A TECHNIQUE FOR CALCULATING SMOOTHING AND
DIFFERENTIATION COEFFICIENTS

By

John P. Sheats

and

Jon B. Haussler

The information in this report has been reviewed for security classifi-

cation. Review of any information concerning Department of Defense

or Atomic Energy Commission programs has been made by the MSFC Security

Classification Officer. This report, in its entirety, has been
determined to be unclassified.

Clarence R. Fulmer

Chief, Flight Simulation Section

Fridtjof Speer

Chief, Flight Evaluation Branch

E. D. Gelssler

Director, Aeroballistics Division



21

INTE RNAL

M-AERO

Dr Geissl3r

Dr Speer
Mr Fulme r

Mr Kurtz

Mr Lindb_rg

Mr Sheats (20)

Mr Hauss[er (5)

Mr. Vaughan
Mr. O. Smith

M-COMP

Mr. W. E. Moore

Mr. Neece

Mr. Howard

Mr. Ander_on

M-COMP (GE)

Mr. Harton

Mr. R. Ro,tdy

M-MS-IPL (8)

M-MS-IP

M-MS-H

M-HME-P

DISTRIBUTION

M- PAT



22

EXTERNAL

DAC

Mr. Ammons
A. J. German
3000OceanPark Boulevard
SantaMoniea, California

Brown Engineering Co.

Mr. Pope
Mr. R. W. Gray

Chrysler

B. F. Heinrich
Chrysler Corp. SpaceDiv.
Michaud Operations
P. O. Box 26018
New Orleans 26, La.

Boeing

A.H. Phillips
The Boeing Company
HIC Bldg.

NAA

A. Shimizu
North American Aviation, Inc.
SpaceandInformation Systems Div.
i2214 LakewoodBoulevard
Downey, California

Scientific and Technical Information Facility
Attn: NASARepresentative (S-AK/RKT)
P. O. Box 5700

Bethesda, Maryland

(2)


